ASSESSMENT SCHEDULE (SAMPLE)

Mathematics with Calculus: Differentiate and use derivatives to solve problems (90635)

Evidence Statement

	Achievement Criteria	No.	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT	Differentiate functions and use differentiation to solve problems	One	$\frac{dy}{dx} = \frac{2x}{x^2 - 3}$ At (2, 0), $\frac{dy}{dx} = 4$	A	Or equivalent. No alternative.	ACHIEVEMENT: Two of Code A
		Two	$f'(x) = 6x^{2} - 42x + 72$ $f'(x) = 0 \text{ for stat pts:}$ $6x^{2} - 42x + 72 = 0$ $x = 4 \text{ or } 3$		First derivative found.	
			y coordinates of TPs: f(3) = 76 f(4) = 75		Coordinates of turning points found. Nature of both	
		Three	f''(x) = 12x - 42 $f''(3) = 36 - 42$ $= -6 ie max$ $f''(4) = 48 - 42$ $= 6 ie min$		turning points identified. Accept any method	
			2 turning points: Maximum: (3, 76) Minimum: (4, 75)		(incl CAO).	
			$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t}$ $= 3\pi r$	A	$\frac{dA}{dt}$ determined in terms of r and evaluated when $r = 6$	
			When $r = 6$ $\frac{dA}{dt} = 18\pi \approx 56.5 \text{ cm}^2 \text{ per}$ min	A	Or equivalent. Units not required.	

	Achievement Criteria	No.	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT WITH MERIT	Demonstrate knowledge, concepts and techniques of differentiation. Solve differentiation problems.	Four Five	$y = x^{\frac{1}{3}} e^{2x}$ $\frac{dy}{dx} = x^{\frac{1}{3}} \cdot 2e^{2x} + e^{2x} \cdot \frac{1}{3} x^{-\frac{2}{3}}$ (a) $\lim_{x \to 2} f(x) = 3$ (b) $f'(x) = 0 \text{ when } -2 < x < 2$ and $x > 4$	A M1	Or equivalent. Accept two of 5a, 5b and 5c as sufficiency for Question five.	MERIT: Achievement plus Three of Code M or
		Six	(c) $f(x)$ not differentiable when $x = -2, 2, 3$ and 4 $V = \frac{1}{3}\pi r^2 h, \qquad h + r = 6$ $V = \frac{1}{3}\pi r^2 (6 - r) \qquad h = 6 - r$	A M1		All four Code M
		Seven	$V = 2\pi r^2 - \frac{1}{3}\pi r^3$ $\frac{dV}{dr} = 4\pi r - \pi r^2$ $\frac{dV}{dr} = 0 \text{ for max.}$ $4\pi r - \pi r^2 = 0$ $r = 0 \text{ or } r = 4$ Max Volume: $V = 32\pi - \frac{64}{3}\pi$ $= \frac{32}{3}\pi \approx 33.5 \text{ cm}^3$ $A = 4\pi r^2 \qquad V = \frac{4}{3}\pi r^3$ $\frac{dA}{dr} = 8\pi r \qquad \frac{dV}{dr} = 4\pi r^2$ $\frac{dA}{dt} = \frac{dA}{dt} \cdot \frac{dr}{dV} \cdot \frac{dV}{dt}$ $= 8\pi r \times \frac{1}{4\pi r^2} \times 0.6$ $= \frac{1.2}{r}$ When $r = 2$, $\frac{dA}{dt} = 0.6 \text{ m}^2 \text{ sec}^{-1}$	A M2	First derivative found. Max volume evaluated. Units not required. Need to write an expression for $\frac{dA}{dt}$ and evaluate it for $r = 2$. Units not required.	

	Achievement Criteria	No.	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT WITH EXCELLENCE		No. Eight (a) Eight (b)	A $\frac{b}{\theta}$ B kt^{2} $AP^{2} = b^{2} + (kt^{2})^{2}$ P $\tan \theta = \frac{kt^{2}}{b} \cos \theta = \frac{b}{\sqrt{b^{2} + k^{2}t^{4}}}$ Differentiating implicitly $\sec^{2} \theta \times \frac{d\theta}{dt} = \frac{k}{b} \times 2t$ $\frac{d\theta}{dt} = \frac{2kt}{b} \times \cos^{2} \theta$ $= \frac{2kt}{b} \times \frac{b^{2}}{b^{2} + k^{2}t^{4}}$ $\frac{d\theta}{dt} = \frac{2bkt}{b^{2} + k^{2}t^{4}}$ as required.	A M E	Judgement A suitable substitution is used to link the expressions: $\tan \theta = \frac{kt^2}{b}$ and $\cos \theta = \frac{b}{\sqrt{b^2 + k^2t^4}}$ The second derivative is found using the quotient rule. The resulting equation is solved for t .	EXCELLENCE: Merit plus Both Code E